likelihood estimate - significado y definición. Qué es likelihood estimate
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es likelihood estimate - definición

METHOD OF ESTIMATING THE PARAMETERS OF A STATISTICAL MODEL, GIVEN OBSERVATIONS
Maximum Likelihood; Maximum likelihood principle; Method of maximum likelihood; Maximum likelihood estimator; Maximum Likelihood Estimation; Maximum-likelihood method; Maximum likelihood estimate; Maximum Likelihood Estimate; Maximum Likelihood Estimator; Maximum-likelihood; Maximum likelihood method; Unconditional maximum likelihood estimation; Conditional maximum likelihood estimation; Semiparametric maximum likelihood estimation; ML Estimate; Maximum likelihood estimation with flow data; Maximum Likelihood Method; Maximum Likelihood Estimation with Flow Data; Maximum likelihood estimators; Maximum likelihood; Maximum-likelihood estimation; Full information maximum likelihood
  • right
  • n}} = 10)
  • Ronald Fisher in 1913

Maximum likelihood estimation         
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
Quasi-maximum likelihood estimate         
Composite likelihood; Composite likelihood estimate; Quasi-maximum likelihood; QMLE; Quasi-maximum likelihood estimation; Quasi-MLE
In statistics a quasi-maximum likelihood estimate (QMLE), also known as a pseudo-likelihood estimate or a composite likelihood estimate, is an estimate of a parameter θ in a statistical model that is formed by maximizing a function that is related to the logarithm of the likelihood function, but in discussing the consistency and (asymptotic) variance-covariance matrix, we assume some parts of the distribution may be mis-specified.
Likelihood function         
JOINT PROBABILITY EVALUATED AT A SAMPLE
Likelihood; Likelihood density function; Log-likelihood; Likelihoods; Support curve; Profile likelihood; Log likelihood; Likelihood functions; Conditional likelihood; Likelihood ratio; Profile-likelihood function; Likelihood (statistics); Loglikelihood; Concentrated likelihood; Concentrated likelihood function; Log-likelihood function; Likelihood equations
The likelihood function (often simply called the likelihood) is the joint probability of the observed data viewed as a function of the parameters of the chosen statistical model.

Wikipedia

Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when all observed outcomes are assumed to have normal distributions with the same variance.

From the perspective of Bayesian inference, MLE is generally equivalent to maximum a posteriori (MAP) estimation with uniform prior distributions (or a normal prior distribution with a standard deviation of infinity). In frequentist inference, MLE is a special case of an extremum estimator, with the objective function being the likelihood.